АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

«Термодинамика и статистическая физика»

по направлению 03.03.03 «Радиофизика» (бакалавриат)

1. Цели и задачи освоения дисциплины

Цели освоения дисциплины: освоение основ и методов описания равновесных и неравновесных систем на основе общих методов термодинамики, статистической механики и физической кинетики, так и навыки решения и исследования конкретных физических задач, формирование необходимых математических и физических основ, достаточного для понимания и усвоения последующих курсов, базирующихся на данной дисциплине; привитие навыков исследовательской работы.

Задачи освоения дисциплины: изучение базовых понятий термодинамики и статистической физики, развитие навыков у студентов к решению задач по термодинамике и статистической физике и применению полученных знаний в решении конкретных научных проблем.

2. Место дисциплины в структуре ОПОП

Дисциплина «Термодинамика и статистическая физика» относится к дисциплинам Базовой части Блока 1 «Дисциплины (модули)» Основной Профессиональной Образовательной Программы по направлению подготовки — 03.03.03 Радиофизика. Данная дисциплина базируется на входных знаниях, умениях, навыках и компетенциях студента, полученных им на предыдущих курсах обучения. Результаты освоения дисциплины будут необходимы для дальнейшего процесса обучения в рамках поэтапного формирования компетенций при изучении последующих дисциплин и для прохождения государственной итоговой аттестации.

3. Перечень планируемых результатов обучения по дисциплине

Процесс изучения дисциплины в соответствии с ФГОС ВО по направлению подготовки 03.03.03 Радиофизика направлен на формирование следующих компетенций:

Код и наименование	Перечень планируемых результатов обучения по	
реализуемой компетенции	дисциплине (модулю), соотнесенных с	
	индикаторами достижения компетенций	
ОПК-1 – способность	Знать: понятия статистического веса, ансамбля,	
применять фундаментальные	микроканонического ансамбля, теплоты, энтропии,	
знания, полученные в области	температуры, теплоемкости, цикла Карно, КПД,	
математических и (или)	микроканонического распределения, канонического	
естественных наук, и	распределения, большого канонического	
использовать их в	распределения, квазистационарного процесса,	
профессиональной	термодинамические потенциалы, квазистационарного	
деятельности;	необратимого процесса, теорему Лиувилля,	
ОПК-2 – способность	статистического интеграла, распределения Гиббса,	
использовать и адаптировать	распределения Максвелла и Больцмана, формулу	
существующие математические	Планка, теорию теплоемкости Эйнштейна и Дебая,	
методы и системы	распределения Бозе-Эйнштейна и Ферми-Дирака.	

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф – Аннотация рабочей программы дисциплины		The same of the sa

программирования для разработки и реализации алгоритмов решения прикладных задач;

Уметь: вычислять статистические веса: находить функции распределения канонического микроканонического ансамблей; вычислять энтропию находить температуру; уметь термодинамические потенциалы и термодинамические суммы, заменять переменные в термодинамике, неявно дифференцировать; вычислять удельную абсолютную энтальпии; вычислять статистическую невзаимодействующих частиц. термодинамические потенциалы из статистической флуктуации, рассчитывать термодинамические потенциалы для ферми- и бозегазов.

Владеть: техникой вычисления статистического веса, числа доступных состояний, плотности доступных состояний; техникой вычисления статистической матрицы плотности. собственных значений собственных функций матрицы плотности; методами вычисления микросостояний замкнутой системы; техникой определения вероятностного распределения через статистические веса и микроканонический ансамбль; методами вычисления статистической суммы и определения внутренней энергии; техникой энтропии, работы определения и теплоты квазистатическом процессе; техникой замены переменных термодинамике неявного дифференцирования; методами вычисления статистической суммы невзаимодействующих частиц.

4. Общая трудоемкость дисциплины

Общая трудоемкость дисциплины составляет 5 зачетных единиц (180 часов).

5. Образовательные технологии

При реализации учебного процесса по данной дисциплине применяются традиционные методы обучения и современные образовательные технологии: лекции и семинарские занятия с использованием активных и интерактивных форм.

При организации самостоятельной работы студентов используются следующие образовательные технологии: изучение лекционного материала, специализированной литературы и электронных ресурсов, рекомендованных по дисциплине, выполнение домашних заданий и контрольных работ по практической части дисциплины.

6. Контроль успеваемости

Программой дисциплины предусмотрены виды текущего контроля: устный опрос, проверка решения задач, контрольная работа.

Промежуточная аттестация проводится в форме: 8 семестр - Экзамен.